Robert Vincent Hogg, Joseph Walter McKean, Allen Thornton Craig. Introduction to Mathematical Statistics, 8th edition (Pearson, 2018)

Chapter 4. Some Elementary Statistical Inferences 제4장. 몇몇 기본적인 통계적 추론

Section 1. Sampling and Statistics 제1절. 표본추출과 통계량

예제(Exercise) 3 및 해설(Solution)

Suppose the number of customers X that visit a store between the hours 9:00 a.m. and 10:00 a.m. follows a Poisson distribution with parameter θ. Suppose a random sample of the number of customers that visit the store between 9:00 a.m. and 10:00 a.m. for 10 days results in the values

9   8   9   15   12   13   12   7   3   12

 (a) Determine the maximum likelihood estimate of θ. Show that it is an unbiased estimator.

 (b) Based on these data, obtain the realization of your estimator in part (a). Explain the meaning of this estimate in terms of the number of customers.

79f38168b69c32b6699fe8b115ef0469e4a7a0ea21


쉽네요



제1장 확률과 분포 https://gall.dcinside.com/mathematics/427136

제2장 다변량 분포 https://gall.dcinside.com/mathematics/410910

제3장 몇몇 특수한 분포 https://gall.dcinside.com/mathematics/430457